Skip to main content
Uniprism Market Research

BANKING, FINANCIAL SERVICES & INSURANCE

Global Generative AI in Insurance Market - Industry Trends and Forecast to 2032

Request Free Sample

​REPORT OVERVIEW

Global Generative AI in Insurance Market, By Component (Solution, Service), Technology (Generative Adversarial Networks (GANs), Transformers, Variational Auto-encoders, Diffusion Networks, Others), Application (Personalized Insurance Policies, Automated Underwriting, Claims Processing Automation, Fraud Detection and Prevention, Virtual Assistants and Customer Support, Others), Region (North America, Europe, Asia-Pacific, South America, Middle East and Africa) – Industry Trends and Forecast to 2032.

Market Insights
The global Generative AI in Insurance market size is valued to be USD xx million in 2023 and is expected to reach USD xx million by 2032, and it is expected to register a CAGR of xx% over the forecast period 2024-2032.

Generative AI in insurance refers to the use of artificial intelligence (AI) models, specifically generative models, to create new data or content within the context of the insurance industry.
Market Dynamics
DRIVERS
  • Fraud Detection and Risk Mitigation
  • Risk Modeling and Scenario Analysis
RESTRAINTS
  • Data Security and Privacy
  • Ethical and Regulatory Concerns
OPPORTUNITIES
  • Improved Risk Assessment and Underwriting
  • Innovative Product Development
CHALLENGES
  • High Computational Resources
  • Integration with Existing Systems

​SEGMENTATION

MARKET SEGMENTATION
  • Component
    • Solution
    • Services
  • Technology
    • Generative Adversarial Networks (GANs)
    • Transformers
    • Variational Auto-encoders
    • Diffusion Networks
    • Others
  • Application
    • Personalized Insurance Policies
    • Automated Underwriting
    • Claims Processing Automation
    • Fraud Detection and Prevention
    • Virtual Assistants and Customer Support
    • Others
The respective global report is completely customizable specific to regions (North America, Europe, Asia-Pacific, South America, Middle East and Africa), countries, segments, and key players as per the client requirements.
REGIONAL SEGMENTATION
  • North America
    • U.S.
    • Canada
    • Mexico
    • Rest of North America
  • Europe
    • Germany
    • U.K.
    • France
    • Italy
    • Spain
    • Russia
    • The Netherlands
    • Belgium
    • Turkey
    • Rest of Europe
  • Asia-Pacific
    • China
    • India
    • Japan
    • South Korea
    • Singapore
    • Malaysia
    • Australia
    • Thailand
    • Philippines
    • Rest of Asia-Pacific
  • South America
    • Brazil
    • Argentina
    • Chile
    • Colombia
    • Rest of South America
  • Middle East and Africa
    • Kingdom of Saudi Arabia
    • South Africa
    • U.A.E.
    • Egypt
    • Rest of Middle East and Africa

​KEY MARKET PLAYERS

  • DataRobot, Inc
  • Amazon Web Services, Inc
  • Avaamo
  • IBM Corporation
  • Microsoft Corporation
  • LeewayHertz
  • Persado, Inc.
  • Aisera
  • Shift Technology
  • AlphaChat

​Table OF CONTENTS

  • SECTION 1 - INTRODUCTION
  • 1.1 Taxonomy
  • 1.2 Market Overview
  • 1.3 Currency and Limitations
  •     1.3.1 Currency
  •     1.3.2 Limitations
  • 1.4 Key Competitors

  • SECTION 2 - RESEARCH METHODOLOGY
  • 2.1 Research Approach
  • 2.2 Data Collection and Validation
  •     2.2.1 Secondary Research
  •     2.2.2 Primary Research
  • 2.3 Market Assessment
  •     2.3.1 Market Size Estimation
  •     2.3.2 Bottom-up Approach
  •     2.3.3 Top-down Approach
  •     2.3.4 Growth Forecast
  • 2.4 Market Study Assumptions
  • 2.5 Data Sources

  • SECTION 3 - EXECUTIVE SUMMARY
  • 3.1 Global Generative AI in Insurance Market, by Component
  • 3.2 Global Generative AI in Insurance Market, by Technology
  • 3.3 Global Generative AI in Insurance Market, by Application
  • 3.4 Global Generative AI in Insurance Market, by Geography
  • 3.5 Market Position Grid

  • SECTION 4 - PREMIUM INSIGHTS
  • 4.1 Regulatory Framework
  •     4.1.1 Standards
  •     4.1.2 Regulatory Landscape
  • 4.2 Value Chain Analysis
  • 4.3 Supply Chain Analysis
  • 4.4 COVID-19 Impact
  • 4.5 Russia-Ukraine War Impact
  • 4.6 PORTER's Five Force Analysis
  • 4.7 PESTLE Analysis
  • 4.8 SWOT Analysis
  • 4.9 Go to Market Strategy
  • 4.10 Opportunity Orbit
  • 4.11 Multivariate Modelling
  • 4.12 Pricing Analysis

  • SECTION 5 - MARKET DYNAMICS
  • 5.1 Trends
  •     5.1.1 Trend 1
  •     5.1.2 Trend 2
  •     5.1.3 Trend 3
  • 5.2 Drivers
  •     5.2.1 Fraud Detection and Risk Mitigation
  •     5.2.2 Risk Modeling and Scenario Analysis
  •     5.2.3 Driver 3
  •     5.2.4 Driver 4
  • 5.3 Restraints
  •     5.3.1 Data Security and Privacy
  •     5.3.2 Ethical and Regulatory Concerns
  •     5.3.3 Restraint 3
  • 5.4 Opportunities
  •     5.4.1 Improved Risk Assessment and Underwriting
  •     5.4.2 Innovative Product Development
  •     5.4.3 Opportunity 3
  •     5.4.4 Opportunity 4
  • 5.5 Challenges
  •     5.5.1 High Computational Resources
  •     5.5.2 Integration with Existing Systems
  •     5.5.3 Challenge 3

  • SECTION 6 - GLOBAL GENERATIVE AI IN INSURANCE MARKET, BY COMPONENT
  • 6.1 Component Summary
  • 6.2 Market Attractive Index
  • 6.3 Global Generative AI in Insurance Market, by Component (2019-2032)

  • SECTION 7 - GLOBAL GENERATIVE AI IN INSURANCE MARKET, BY TECHNOLOGY
  • 7.1 Technology Summary
  • 7.2 Market Attractive Index
  • 7.3 Global Generative AI in Insurance Market, by Technology (2019-2032)

  • SECTION 8 - GLOBAL GENERATIVE AI IN INSURANCE MARKET, BY APPLICATION
  • 8.1 Application Summary
  • 8.2 Market Attractive Index
  • 8.3 Global Generative AI in Insurance Market, by Application (2019-2032)

  • SECTION 9 - GLOBAL GENERATIVE AI IN INSURANCE MARKET, BY GEOGRAPHY
  • 9.1 Regional Summary
  • 9.2 Market Attractive Index
  • 9.3 Global Generative AI in Insurance Market, by Geography (2019-2032)

  • SECTION 10 - NORTH AMERICA GENERATIVE AI IN INSURANCE MARKET
  • 10.1 North America Summary
  • 10.2 Market Attractive Index
  • 10.3 North America Generative AI in Insurance Market, by Component (2019-2032)
  • 10.4 North America Generative AI in Insurance Market, by Technology (2019-2032)
  • 10.5 North America Generative AI in Insurance Market, by Application (2019-2032)
  • 10.6 North America Generative AI in Insurance Market, by Country (2019-2032)
  •     10.6.1 U.S.
  •     10.6.2 Canada
  •     10.6.3 Mexico
  •     10.6.4 Rest of North America

  • SECTION 11 - EUROPE GENERATIVE AI IN INSURANCE MARKET
  • 11.1 Europe Summary
  • 11.2 Market Attractive Index
  • 11.3 Europe Generative AI in Insurance Market, by Component (2019-2032)
  • 11.4 Europe Generative AI in Insurance Market, by Technology (2019-2032)
  • 11.5 Europe Generative AI in Insurance Market, by Application (2019-2032)
  • 11.6 Europe Generative AI in Insurance Market, by Country (2019-2032)
  •     11.6.1 Germany
  •     11.6.2 U.K.
  •     11.6.3 France
  •     11.6.4 Italy
  •     11.6.5 Spain
  •     11.6.6 Russia
  •     11.6.7 The Netherlands
  •     11.6.8 Belgium
  •     11.6.9 Turkey
  •     11.6.10 Rest of Europe

  • SECTION 12 - ASIA-PACIFIC GENERATIVE AI IN INSURANCE MARKET
  • 12.1 Asia-Pacific Summary
  • 12.2 Market Attractive Index
  • 12.3 Asia-Pacific Generative AI in Insurance Market, by Component (2019-2032)
  • 12.4 Asia-Pacific Generative AI in Insurance Market, by Technology (2019-2032)
  • 12.5 Asia-Pacific Generative AI in Insurance Market, by Application (2019-2032)
  • 12.6 Asia-Pacific Generative AI in Insurance Market, by Country (2019-2032)
  •     12.6.1 China
  •     12.6.2 India
  •     12.6.3 Japan
  •     12.6.4 South Korea
  •     12.6.5 Singapore
  •     12.6.6 Malaysia
  •     12.6.7 Australia
  •     12.6.8 Thailand
  •     12.6.9 Philippines
  •     12.6.10 Rest of Asia-Pacific

  • SECTION 13 - SOUTH AMERICA GENERATIVE AI IN INSURANCE MARKET
  • 13.1 South America Summary
  • 13.2 Market Attractive Index
  • 13.3 South America Generative AI in Insurance Market, by Component (2019-2032)
  • 13.4 South America Generative AI in Insurance Market, by Technology (2019-2032)
  • 13.5 South America Generative AI in Insurance Market, by Application (2019-2032)
  • 13.6 South America Generative AI in Insurance Market, by Country (2019-2032)
  •     13.6.1 Brazil
  •     13.6.2 Argentina
  •     13.6.3 Chile
  •     13.6.4 Colombia
  •     13.6.5 Rest of South America

  • SECTION 14 - MIDDLE EAST AND AFRICA GENERATIVE AI IN INSURANCE MARKET
  • 14.1 Middle East and Africa Summary
  • 14.2 Market Attractive Index
  • 14.3 Middle East and Africa Generative AI in Insurance Market, by Component (2019-2032)
  • 14.4 Middle East and Africa Generative AI in Insurance Market, by Technology (2019-2032)
  • 14.5 Middle East and Africa Generative AI in Insurance Market, by Application (2019-2032)
  • 14.6 Middle East and Africa Generative AI in Insurance Market, by Country (2019-2032)
  •     14.6.1 Kingdom of Saudi Arabia
  •     14.6.2 South Africa
  •     14.6.3 U.A.E.
  •     14.6.4 Egypt
  •     14.6.5 Rest of Middle East and Africa

  • SECTION 15 - COMPANY SHARE ANALYSIS
  • 15.1 Global Generative AI in Insurance Market, Company Share Analysis
  • 15.2 North America Generative AI in Insurance Market, Company Share Analysis
  • 15.3 Europe Generative AI in Insurance Market, Company Share Analysis
  • 15.4 Asia-Pacific Generative AI in Insurance Market, Company Share Analysis

  • SECTION 16 - COMPANY PROFILES
  • 16.1 DataRobot, Inc
  • 16.1.1 Company Snapshot
  •     16.1.2 Financial Overview
  •     16.1.3 Product Portfolio
  •     16.1.4 Recent Developments
  • 16.2 Amazon Web Services, Inc
  •     16.2.1 Company Snapshot
  •     16.2.2 Financial Overview
  •     16.2.3 Product Portfolio
  •     16.2.4 Recent Developments
  • 16.3 Avaamo
  •     16.3.1 Company Snapshot
  •     16.3.2 Financial Overview
  •     16.3.3 Product Portfolio
  •     16.3.4 Recent Developments
  • 16.4 IBM Corporation
  •     16.4.1 Company Snapshot
  •     16.4.2 Financial Overview
  •     16.4.3 Product Portfolio
  •     16.4.4 Recent Developments
  • 16.5 Microsoft Corporation
  •     16.5.1 Company Snapshot
  •     16.5.2 Financial Overview
  •     16.5.3 Product Portfolio
  •     16.5.4 Recent Developments
  • 16.6 LeewayHertz
  •     16.6.1 Company Snapshot
  •     16.6.2 Financial Overview
  •     16.6.3 Product Portfolio
  •     16.6.4 Recent Developments
  • 16.7 Persado, Inc.
  •     16.7.1 Company Snapshot
  •     16.7.2 Financial Overview
  •     16.7.3 Product Portfolio
  •     16.7.4 Recent Developments
  • 16.8 Aisera
  •     16.8.1 Company Snapshot
  •     16.8.2 Financial Overview
  •     16.8.3 Product Portfolio
  •     16.8.4 Recent Developments
  • 16.9 Shift Technology
  •     16.9.1 Company Snapshot
  •     16.9.2 Financial Overview
  •     16.9.3 Product Portfolio
  •     16.9.4 Recent Developments
  • 16.10 AlphaChat
  •     16.10.1 Company Snapshot
  •     16.10.2 Financial Overview
  •     16.10.3 Product Portfolio
  •     16.10.4 Recent Developments

  • SECTION 17 - RELATED REPORTS

  • SECTION 18 - DISCLAIMER

​RESEARCH METHODOLOGY

The research methodology employed in Uniprism Market Research involves four basic steps namely research and data collection, data pre-processing, modeling and forecasting, quality assurance and output.
RESEARCH AND DATA COLLECTION
A tripod model research technique is followed for research and data collection in which various approaches such as primary research, secondary research, and product mapping are considered.

Primary research basically involves the process of conducting personalized interviews with market related professionals of major market players, investors, distributors, vendors and many more.

The secondary research include data published by government, annual reports, press releases, investor presentations of companies, white papers, certified publications, annual manufacturing limit of the respective industries related to the market, production consumption analysis of certain products respective to the market and many more.

Below mention are few of the sources which we have considered while estimating the market size:
For instance,
  • Research articles published on Technium
  • Science and MDPI
  • Research publications by government approved associations and societies

Product mapping means the process of mapping the list of products that a key player contributes to the market as well as estimating the revenue of those products in order to define the Global Company share analysis of the respective Global Company in global, regional, and country level markets.
DATA PRE-PROCESSING

The term "data pre-processing" refers to the collection of procedures and methods used to clean, modify, and make ready for analysis the raw data gathered during research and data collection. The completion of this phase is necessary to guarantee that the data are reliable, consistent, and appropriate for statistical analysis and other data-driven tasks. The data pre-processing ensures that the information gathered from research and data collection is comparable and expressed in standard units, by the integration of missing data pointers and algorithmic approaches.

MODELING AND FORECASTING
The process of developing mathematical, statistical, or computational representations of real-world occurrences or relationships is known as modelling. These models are intended to replicate and explain market interactions, interdependence, and dynamics. These models are used by Uniprism Market Research to acquire a better knowledge of numerous market characteristics such as customer preferences, pricing elasticity, competition dynamics, and more. Depending on the individual study aims, many types of models are utilized, such as regression models, econometric models, decision tree models, and machine learning models.

Forecasting is the process of predicting future market conditions, trends, and occurrences using past data and models. Forecasting is used by Uniprism Market Research to estimate future sales, demand for products or services, market growth, and other important performance metrics. Forecasting accurately can assist organizations in making educated decisions about resource allocation, pricing, inventory management, and marketing tactics.

We create standardized bottom-up or top-down models that scale by leveraging data science and machine learning technology. All our market models consider the unique market characteristics of each country. Forecasting is based on major market indicators and a combination of traditional methodologies, such as exponential smoothing, time series analysis, regression analysis, and more modern techniques such as machine learning algorithms are all forecasting methodologies. The method chosen is determined on the nature of the data and the specific forecasting aims.
QUALITY ASSURANCE AND OUTPUT

Quality assurance and output involves the process of validation, adjustments, further publications of key market indicators. Extensive plausibility and consistency tests are performed on derived time series to ensure the high degree of quality of our market analysis. This quality assurance procedure also includes rigorous inspection, validation, and editing by an experienced management team to assure the dependability of the published data.

Choose License Type

  • $3599
    $4799
    $5899
    $7499